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BY 
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ABSTRACT 

It is s h o w n  tha t  i r r e d u c i b l e  f ini te s ta te ,  M a r k o v  shif ts  of  t h e  s a m e  e n t r o p y  a n d  

period are iqnitarily isomorphic. 

1. Introduction 

The purpose of this paper is to prove the following result. 

THEOREM. Irreducible finite memory Markov shifts on finite state spaces are 

finitarily isomorphic iff they have the same period and the same entropy. 

This paper is a continuation of [8] and [9] in which we introduced the marker 

method of constructing isomorphisms, different from the method developed by 

Ornstein. The marker method yields finitary maps, but is more limited in scope. 

Using Ornstein's method, the (non-finitary) isomorphism theorem for Markov 

shifts was proved in [6] and [4]. 
More recently, a finitary homomorphism theorem for Markov shifts of 

different entropies was proved by Akcoglu, del Junco and Rahe in [1]. Also, 

Adler and Marcus [3] gave a topological equivalence theorem for shifts of finite 

type. In particular, it follows from this that in the special class of Markov shifts of 

maximal entropy, two are isomorphic if they have the same entropy and period. 

One interesting consequence of our theorem above is obtained by considering 

a hyperbolic automorphism of a torus. Since these have nice Markov partitions, 

they are finitarily isomorphic to Markov shifts and hence by our theorem to 

Bernoulli schemes. Thus there is a generating partition into open sets (with 

boundary measure zero) which is measure-theoretically independent under the 
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automorphism. That this result is in a certain sense optimal was shown by Bowen 

[5]; he proves that such a partition cannot have piecewise smooth boundaries. 

The question of whether every ergodic automorphism of a torus is finitarily 

isomorphic to a Bernoulli (or equivalently Markov) shift remains open. Katznel- 

son [7] proved this for non-finitary isomorphism. 

2. Preliminaries 

In the proof of the theorem, we shall be constructing new stochastic processes 

in several ways from given ones. In this paragraph we describe the constructions 

used and their properties. 

Let X = (X,) ,~z be a stationary ergodic process on a finite state space 

A = {a,, a 2 , ' "  ", a,~}. 

DEFINITION 1. The process (X~)),~z, called the k-stringing of X, is defined as 

follows, where k is a fixed positive integer. The state space of X <k) is 

A k = A x . . . •  k times, and 

(n Z ) .  

LEMMA 1. X and X ~k) are finitarily (and even continuously) isomorphic. I f  X 
is a Markov process, then X <k) is also a Markov process. 

The proof is obvious. 

DEFINmON 2. Let A '  _C A be a subset of the set of states of X, and let b be a 

symbol not belonging to A. We say that the process X' ,  defined by 

X ' =  i I X ,  E A ' ,  

is obtained from X by collapsing A' .  

DEFr~ON 3. Let b l , " ' , b t  be symbols not belonging to A, ql, . . . ,q~ a 

probability vector, and ai E A. We say that the process X is obtained from X by 
independently splitting a~ according to ql, '" ", ql if X is defined as follows: The 

states of 3f are b l , . . . ,  bt, a l , .  �9 ai_l, a~§ �9 �9 am, and if Co," ", c, is a sequence of 

such states with c~1 = b~,,- �9 c h = b~., all other c /s  being a 's ,  then 

P[ ,r  = Co , . . . ,  = c,] 

= (  lzI,=l qi') P[Xn+j'=at'l<--t<=s'X"+i=ci for the other ]'s]. 
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DEFINITION 4. The state a~ of X is said to be a renewal state if for each fixed 

n, the tr-algebras 9.1(X.+~,X.+2,...) and 9~(... ,X.-2,X.-1) are conditionally 

independent given the event [X. = a,]. 

Note that X is a Markov process itI each state of A is a renewal state. The 

proofs of the following lemmas are obvious. 

LEMMA 2. Let A ' C A ,  a~ ~ A ' such that a~ is a renewal state for X.  Then a~ is 

a renewal state for X ' ,  obtained from X by collapsing A ' .  

LE~aA 3. I f  X and ~ are as in Definition 3, with entropies h and l~ 

respectively, then 

where 

/~ = h + P[X0 = a, 1. h (q 1,'" ", q,), 

I 

h ( q l, " " " , q, ) = - ~ qi log qj. 
j=l 

DEFINITION 5. 

process X obtained by setting 

Let a~ E A. The distribution of  the state a~ is defined as the 

01 if X. • a,, 
X .  = if X , ,  = a, .  

3. Markers  for Markov  shifts 

To prove our theorem, we may obviously assume that the Markov shifts are 

mixing ( = of period one), and in view of the finitary isomorphism theorem for 

Bernoulli schemes [9], it suffices to show that a given Markov shift is finitarily 

isomorphic to some Bernoulli scheme, which we may choose at our discretion. 

The Markov shift may be assumed to be of memory one (Lemma 1). 

To do this, we start, with a Mixing Markov shift X of memory one, and 

construct two processes Y and Z such that for some k _--> 1, 

(1) Z is a Bernoulli process (independent process), 

(2) X <k) and Y have renewal states with the same distribution, 

(3) Z <k) and Y have renewal states with the same distribution, 

(4) h ( X ) =  h ( Y ) =  h ( Z ) .  

Once we have constructed Y and Z, the methods of [9] yield with minor 

modifications (which we shall not detail here) finitary isomorphisms between 

X <k) and Y, and between Y and Z <k), using their respective renewal states with 
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the same distributions as markers.  Thus it suffices to find Y, Z and k _-> 1 with the 

above propert ies (1)-(4), and the rest of the paper  is devoted to that purpose. 

LEMMA 4. Le t  X be a m ix ing  M a r k o v  shi f t  with state space A = { a l , "  ", am}, 

m ~ 2. There exists a state as ~ A such that  for  all  integers k, there is an  a l lowable  

sequence  

ol o 0 o . = a l O / 2 .  . a ~  k 

with a o j as for  all 1 <= i <= k. 

REMARK. By al lowable  sequence  we mean a sequence a ~ for which P[X~-- 

a~ .- ", XE = a ~ is strictly positive. 

PROOF. Since m _-> 2 and X is mixing, there exists a state, say ah, of A which 

leads to at least two different states (one of which may be ah itself). Let 

ahar �9 �9 �9 ah denote the shortest allowable sequence f rom ah to ah (there is at least 

one since X is mixing), and let a s J a f  such that ah leads to a s also. Then as 

cannot appear  in ahd r �9 �9 �9 ah, because otherwise this sequence could be shortened 

by placing ah immediately before the first occurrence of as and removing the 

initial elements. (Note that if ah leads to ah, then ahah is the shortest sequence.) 

Therefore  in the infinite sequence 

ahaf �9 �9 �9 ahaf �9 �9 �9 ahaf �9 �9 �9 

made up by concatenating the shortest sequence with itself, any finite sequence 

is allowable and does not contain a s . 

DEFINn'ION 6. Let a s be as in Lemma  4. Choose an integer ko such that for 

all k => ko, and for all 1 -< i =< m, there is an allowable sequence 

O~i ~ o r  i 
1 2 " ' ' O / k  

i with a~ = as and a k = ai. This is possible because X is mixing. 

In the following, k will be chosen later, but we assume that k is fixed and the 
Ot m sequences a ~ a~, . .  ., are chosen as above. 

Now let W = ( W , ) n ~ z  be a Bernoulli process with states b0, b~, . . . ,  bm and 

probabilities qo, q~, '" ", qm. Form the process X • W = I7" and let 17r be the 

k-stringing of I 7. We partition the states of 17r into three disjoint subsets M, N, 

and O, defined as follows: 

M =  I , . J { a ' x ( b o ,  b o , . . . , b o ,  bl): l < - i < = m }  , 

length k 
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N = {a ~ x (b~,,..., b,~): (b,,,. .  ", b,~) E {b0,'" ", b,,}k}, 

O = all other states of 1 ?t~. 

Let Y'  denote the process obtained f rom 17"~k) by collapsing M, N and O 

(separately). Thus Y'  has three states which we shall of course denote  also by M, 

N, and O. Since the probabilities of M and N tend to zero as k --+ oo (regardless 

of the choice of W) we can choose k so large that h ( Y ' ) <  h(X). 
Now we use the very pretty idea of Akcoglu, del Junco and Rahe  in [1]. Their  

Lemma  6.2 says that we may choose the probabilities qo, q~, �9 �9 ", qm such that the 

distribution of M in Y'  is the same as the distribution of some state of a 

k-stringing of a well-chosen Bernoulli process Z, which we may take to have the 

same entropy as X. 

Finally we can, in view of Lemma  5, split the state 0 independently in such a 

fashion to obtain a process Y, with states M,N, O1, O 2 , ' - ' ,  O~, such that 

h(Y) = h(X). Since the state N of Y obviously has the same distribution as the 

state a ~ of X tk), and since the state M of Y has the same distribution as a state of 

Z tk), Z chosen as indicated above, and since h (X)  = h (Y)  = h (Z),  we only need 

to verify the following lemma to complete  our  proof. 

LEMMA 5. M and N are renewal states for Y'  (and hence also for Y, since 
independent splitting of 0 does not destroy the renewal property). 

PROOF. Let E '  be an event depending on Y~, Y~',- . . ,  and F '  an event 

depending on Y-'l, Y'-:, �9 �9 ". To  show that M and N are renewal states, we must 

show that E '  and F '  are conditionally independent  under Ya = M and Ya = N. 

E '  is ((XI, W1), (X2, W2) , . . . ) -measurable  and F '  is (...(X_~,W_~), 

(Xo, Wo), . -- ,  (Xk§ Wk-1))-measurable. The event [Y~ = N] forces Y, = N or O 

for 0_- < n =< k -  1 since Y~ = M is excluded because a ~ does not contain a s. 

Therefore,  E '  becomes ((XkWk),(X~+I, W~§ . )-measurable and the relative 

independence of E '  and F '  follows f rom the Markov property of X x W. 

Similarly, [ Y; = M]  forces Y" = O, - k + 1 =< n < 0 since N is excluded as 

above and M is excluded because of the sequence (bo , - ' - ,  b0, b,), i #  0. 

So, F '  becomes ( . . . (X2W-2)(X_lW_l))-measurable  and therefore relatively 

independent  of E ' .  []  
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